Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood.
نویسنده
چکیده
Brain-derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform papillae, and 26% of their fungiform taste buds by adulthood. The reduction of taste buds in the adult circumvallate papilla was similar to that observed previously at postnatal day 7 (Fan et al. Brain Res Dev Brain Res 2004;150:23-39). Taken together, these findings indicate that the p75 receptor is critical for the development of a full complement of taste buds, but is not required for maintenance of circumvallate taste buds in adulthood. Immunolabeling for p75 was not observed in taste buds, indicating that p75 signaling influences taste bud number indirectly. Geniculate ganglion neurons, which provides innervation to fungiform taste buds, express the p75 receptor. Mice with p75 null mutations also have fewer neurons in the geniculate ganglion. Together, these results suggest that the p75 receptor is important for the survival of geniculate neurons and geniculate neuron survival is required for the development of a full complement of taste buds by adulthood.
منابع مشابه
Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes.
Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic fac...
متن کاملTaste Neurons Consist of Both a Large TrkB-Receptor-Dependent and a Small TrkB-Receptor-Independent Subpopulation
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) are two neurotrophins that play distinct roles in geniculate (taste) neuron survival, target innervation, and taste bud formation. These two neurotrophins both activate the tropomyosin-related kinase B (TrkB) receptor and the pan-neurotrophin receptor p75. Although the roles of these neurotrophins have been well studied, the deg...
متن کاملAlterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
Sensory ganglia that innervate taste buds and gustatory papillae (geniculate and petrosal) are reduced in volume by about 40% in mice with a targeted deletion of the gene for brain-derived neurotrophic factor (BDNF). In contrast, the trigeminal ganglion, which innervates papillae but not taste buds on the anterior tongue, is reduced by only about 18%. These specific alterations in ganglia that ...
متن کاملInnervation of single fungiform taste buds during development in rat.
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. I...
متن کاملRat gustatory neurons in the geniculate ganglion express glutamate receptor subunits.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology
دوره 288 12 شماره
صفحات -
تاریخ انتشار 2006